skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosso, Felipe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We analyze deformations of $$ \mathcal{N} $$ N = 1 Jackiw-Teitelboim (JT) supergravity by adding a gas of defects, equivalent to changing the dilaton potential. We compute the Euclidean partition function in a topological expansion and find that it matches the perturbative expansion of a random matrix model to all orders. The matrix model implements an average over the Hamiltonian of a dual holographic description and provides a stable non-perturbative completion of these theories of $$ \mathcal{N} $$ N = 1 dilaton-supergravity. For some range of deformations, the supergravity spectral density becomes negative, yielding an ill-defined topological expansion. To solve this problem, we use the matrix model description and show the negative spectrum is resolved via a phase transition analogous to the Gross-Witten-Wadia transition. The matrix model contains a rich and novel phase structure that we explore in detail, using both perturbative and non-perturbative techniques. 
    more » « less